Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.040
1.
Infect Dis Clin North Am ; 38(2): 241-253, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729665

This article discusses the urinary microbiome in relation to urinary tract infection (UTI) in women. It makes biologic sense that the microbiota of different niches (bladder, vagina, and gut) interact with each other in health, as well as during a UTI event; however, these relationships remain poorly understood. Future research should close knowledge gaps regarding the interactions between the urinary microbiota and the host, amongst the microbiota of adjacent niches, and between the microbes within the same microbiota. The new knowledge should result in improved UTI treatment in the age of antibiotic stewardship.


Microbiota , Urinary Tract Infections , Humans , Urinary Tract Infections/diagnosis , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Female , Adult , Anti-Bacterial Agents/therapeutic use , Urinary Tract/microbiology , Vagina/microbiology , Urinary Bladder/microbiology
2.
Clin Perinatol ; 51(2): 425-439, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705650

This review illuminates the complex interplay between various maternal microbiomes and their influence on preterm birth (PTB), a driving and persistent contributor to neonatal morbidity and mortality. Here, we examine the dynamics of oral, gastrointestinal (gut), placental, and vaginal microbiomes, dissecting their roles in the pathogenesis of PTB. Importantly, focusing on the vaginal microbiome and PTB, the review highlights (1) a protective role of Lactobacillus species; (2) an increased risk with select anaerobes; and (3) the influence of social health determinants on the composition of vaginal microbial communities.


Gastrointestinal Microbiome , Microbiota , Placenta , Premature Birth , Vagina , Humans , Female , Pregnancy , Premature Birth/microbiology , Premature Birth/epidemiology , Vagina/microbiology , Infant, Newborn , Placenta/microbiology , Gastrointestinal Microbiome/physiology , Lactobacillus , Mouth/microbiology
3.
BMC Vet Res ; 20(1): 200, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745199

BACKGROUND: In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS: After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION: This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.


Escherichia coli Infections , Escherichia coli , Haplotypes , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Milk/microbiology , Milk/cytology , Female , Mastitis, Bovine/microbiology , Staphylococcus aureus/physiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cell Count/veterinary , Body Temperature , Vagina/microbiology
5.
Gut Microbes ; 16(1): 2353394, 2024.
Article En | MEDLINE | ID: mdl-38743047

Exposing C-section infants to the maternal vaginal microbiome, coined "vaginal seeding", partially restores microbial colonization. However, whether vaginal seeding decreases metabolic disease risk is unknown. Therefore, we assessed the effect of vaginal seeding of human infants on adiposity in a murine model. Germ-free mice were colonized with transitional stool from human infants who received vaginal seeding or control (placebo) seeding in a double-blind randomized trial. There was a reduction in intraabdominal adipose tissue (IAAT) volume in male mice that received stool from vaginally seeded infants compared to control infants. Higher levels of isoleucine and lower levels of nucleic acid metabolites were observed in controls and correlated with increased IAAT. This suggests that early changes in the gut microbiome and metabolome caused by vaginal seeding have a positive impact on metabolic health.


Adiposity , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Vagina , Animals , Humans , Female , Mice , Male , Vagina/microbiology , Feces/microbiology , Feces/chemistry , Double-Blind Method , Intra-Abdominal Fat/metabolism , Infant , Infant, Newborn
6.
J Int Med Res ; 52(5): 3000605241239021, 2024 May.
Article En | MEDLINE | ID: mdl-38726878

OBJECTIVE: Recurrent bacterial vaginosis (RBV) after antibiotic treatment has relapse rates of 35% within 3 months and 60% within 12 months. A medical device containing polycarbophil, lauryl glucoside, and glycerides (PLGG) inhibits bacterial growth and has mucoadhesive properties. This study examined the efficacy of the device in women with RBV. METHODS: This post-market clinical follow-up study comprised two phases. The first phase was an interventional, open-label, non-controlled, multicenter study enrolling 56 women. The second phase was an observational 10-month follow-up without treatment. RESULTS: After three cycles of PLGG treatment, recurrence was identified in 8 of 54 evaluable patients (14.81%). A positive effect on lactobacilli in the vaginal secretions was observed in 26 of 39 patients (66.67%). Among 35 patients observed after stopping PLGG treatment, one case of RBV (2.86%) was observed after 4 months, and an additional six cases (17.14%) were observed after 10 ± 2 months. Therefore, no recurrence was evidenced in 12 subjects (34.28%) at the end of the study. CONCLUSION: The use of PLGG vaginal ovules in the treatment of BV reduces the rate of recurrence and apparently produces a positive effect on the vaginal microbiota.


Recurrence , Vagina , Vaginosis, Bacterial , Humans , Female , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/microbiology , Adult , Follow-Up Studies , Vagina/microbiology , Middle Aged , Treatment Outcome , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Lactobacillus/isolation & purification , Administration, Intravaginal , Young Adult
7.
Sex Transm Dis ; 51(6): 437-440, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38733973

OBJECTIVES: Live biotherapeutic products (LBPs) containing vaginal Lactobacillus crispatus are promising adjuvant treatments to prevent recurrent bacterial vaginosis (BV) but may depend on the success of initial antibiotic treatment. METHODS: A post hoc analysis of data collected during the phase 2b LACTIN-V randomized control trial (L. crispatus CTV-05) explored the impact of clinical BV cure defined as Amsel criteria 0 of 3 (excluding pH, per 2019 Food and Drug Administration guidance) 2 days after completion of treatment with vaginal metronidazole gel on the effectiveness of an 11-week LACTIN-V dosing regimen to prevent BV recurrence by 12 and 24 weeks. RESULTS: At enrollment, 88% of participants had achieved postantibiotic clinical BV cure. The effect of LACTIN-V on BV recurrence compared with placebo differed by initial clinical BV cure status. The LACTIN-V to placebo risk ratio of BV recurrence by 12 weeks was 0.56 (95% confidence interval, 0.35-0.77) among participants with initial clinical BV cure after metronidazole treatment and 1.34 (95% confidence interval, 0.47-2.23) among participants without postantibiotic clinical BV cure. Among women receiving LACTIN-V, those who had achieved postantibiotic clinical BV cure at enrollment reached higher levels of detectable L. crispatus CTV-05 compared with women failing to achieve postantibiotic clinical BV cure. CONCLUSIONS: LACTIN-V seems to only decrease BV recurrence in women with clinical cure of BV after initial antibiotic treatment. Future trials of LBPs should consider limiting enrollment to these women.


Anti-Bacterial Agents , Lactobacillus crispatus , Metronidazole , Probiotics , Vaginosis, Bacterial , Humans , Female , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/prevention & control , Vaginosis, Bacterial/microbiology , Metronidazole/administration & dosage , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Adult , Lactobacillus crispatus/physiology , Probiotics/administration & dosage , Treatment Outcome , Recurrence , Secondary Prevention , Administration, Intravaginal , Young Adult , Vagina/microbiology , Double-Blind Method
8.
Rev Int Androl ; 22(1): 38-43, 2024 Mar.
Article En | MEDLINE | ID: mdl-38735876

It is estimated that microorganisms colonize 90% of the body surface. In some tracts, such as the genitourinary tract, the microbiota varies throughout life, influenced by hormonal stimulation and sexual practices. This study evaluated the semen differences and presence of Lactobacillus crispatus, Lactobacillus iners, Gardnerella vaginalis and Atopobium vaginae in semen samples from patients with symptoms of chronic prostatitis and men asymptomatic for urogenital infections. Fifty-three semen samples were included: 22 samples from men with symptoms of chronic prostatitis and 31 asymptomatic men (control group). In addition to the presence of L. crispatus, L. iners, G. vaginalis and A. vaginae, semen parameters, total antioxidant capacity of seminal plasma, prostatic antigen and some proinflammatory cytokines were evaluated in each semen sample. Volunteers with symptoms of chronic prostatitis presented a lower percentage of sperm morphology (4.3% vs. control group 6.0%, p = 0.004); in the semen samples of volunteers in the group asymptomatic for urogenital infections, microorganisms associated with the vaginal microbiota were detected more frequently. The presence of bacteria in the vaginal microbiota can also benefit male reproductive health, which undergoes various modifications related to lifestyle habits that are susceptible to modification. Microorganisms associated with the vaginal microbiota, such as L. crispatus, L. iners, G. vaginalis and A. vaginae, may have a protective role against the development of male genitourinary diseases such as prostatitis.


Coitus , Microbiota , Prostatitis , Semen , Humans , Male , Prostatitis/microbiology , Semen/microbiology , Adult , Microbiota/physiology , Gardnerella vaginalis/isolation & purification , Lactobacillus/isolation & purification , Vagina/microbiology , Middle Aged , Actinobacteria/isolation & purification , Female , Young Adult , Chronic Disease , Case-Control Studies , Semen Analysis , Cytokines/metabolism , Cytokines/analysis
9.
Cell Rep ; 43(4): 114078, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38598334

The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.


Lactobacillus , Microbiota , Vagina , Humans , Vagina/microbiology , Female , Microbiota/genetics , Lactobacillus/genetics , Adhesins, Bacterial/genetics , Ethnicity/genetics , Adult , Evolution, Molecular , Pregnancy , Selection, Genetic , Biological Evolution
10.
Sci Rep ; 14(1): 9365, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654026

Strategies against the opportunistic fungal pathogen Candida albicans based on probiotic microorganisms represent a promising alternative to traditional antifungals. Here, we investigated the effects of Lactobacillaceae isolates from fermented foods or the human vagina, alone or in combination with the probiotic yeast Saccharomyces cerevisiae CNCM I-3856, against C. albicans in vitro. Nine out of nineteen tested strains of Lactobacillaceae inhibited growth of C. albicans with inhibition zones of 1-3 mm in spot assays. Five out of nineteen lactobacilli tested as such or in combination with S. cerevisiae CNCM I-3856 also significantly inhibited C. albicans hyphae formation, including Limosilactobacillus fermentum LS4 and L. fermentum LS5 resulting in respectively 62% and 78% hyphae inhibition compared to the control. Thirteen of the tested nineteen lactobacilli aggregated with the yeast form of C. albicans, with Lactiplantibacillus carotarum AMBF275 showing the strongest aggregation. The aggregation was enhanced when lactobacilli were combined with S. cerevisiae CNCM I-3856. No significant antagonistic effects were observed between the tested lactobacilli and S. cerevisiae CNCM I-3856. The multifactorial activity of Lactobacillaceae strains alone or combined with the probiotic S. cerevisiae CNCM I-3856 against C. albicans without antagonistic effects between the beneficial strains, paves the way for developing consortium probiotics for in vivo applications.


Candida albicans , Lactobacillus , Probiotics , Saccharomyces cerevisiae , Candida albicans/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/drug effects , Probiotics/pharmacology , Lactobacillus/physiology , Humans , Hyphae/drug effects , Hyphae/growth & development , Antibiosis , Female , Vagina/microbiology
11.
Front Cell Infect Microbiol ; 14: 1377225, 2024.
Article En | MEDLINE | ID: mdl-38644962

Background: Bacterial vaginosis (BV) is a most common microbiological syndrome. The use of molecular methods, such as multiplex real-time PCR (mPCR) and next-generation sequencing, has revolutionized our understanding of microbial communities. Here, we aimed to use a novel multiplex PCR test to evaluate the microbial composition and dominant lactobacilli in non-pregnant women with BV, and combined with machine learning algorithms to determine its diagnostic significance. Methods: Residual material of 288 samples of vaginal secretions derived from the vagina from healthy women and BV patients that were sent for routine diagnostics was collected and subjected to the mPCR test. Subsequently, Decision tree (DT), random forest (RF), and support vector machine (SVM) hybrid diagnostic models were constructed and validated in a cohort of 99 women that included 74 BV patients and 25 healthy controls, and a separate cohort of 189 women comprising 75 BV patients, 30 intermediate vaginal microbiota subjects and 84 healthy controls, respectively. Results: The rate or abundance of Lactobacillus crispatus and Lactobacillus jensenii were significantly reduced in BV-affected patients when compared with healthy women, while Lactobacillus iners, Gardnerella vaginalis, Atopobium vaginae, BVAB2, Megasphaera type 2, Prevotella bivia, and Mycoplasma hominis were significantly increased. Then the hybrid diagnostic models were constructed and validated by an independent cohort. The model constructed with support vector machine algorithm achieved excellent prediction performance (Area under curve: 0.969, sensitivity: 90.4%, specificity: 96.1%). Moreover, for subjects with a Nugent score of 4 to 6, the SVM-BV model might be more robust and sensitive than the Nugent scoring method. Conclusion: The application of this mPCR test can be effectively used in key vaginal microbiota evaluation in women with BV, intermediate vaginal microbiota, and healthy women. In addition, this test may be used as an alternative to the clinical examination and Nugent scoring method in diagnosing BV.


Artificial Intelligence , Microbiota , Multiplex Polymerase Chain Reaction , Vagina , Vaginosis, Bacterial , Humans , Female , Vaginosis, Bacterial/diagnosis , Vaginosis, Bacterial/microbiology , Vagina/microbiology , Adult , Microbiota/genetics , Multiplex Polymerase Chain Reaction/methods , Young Adult , Lactobacillus/isolation & purification , Lactobacillus/genetics , Support Vector Machine , Sensitivity and Specificity , ROC Curve , Middle Aged
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 461-468, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645857

Objective: To develop an artificial intelligence vaginal secretion analysis system based on deep learning and to evaluate the accuracy of automated microscopy in the clinical diagnosis of aerobic vaginitis (AV). Methods: In this study, the vaginal secretion samples of 3769 patients receiving treatment at the Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University between January 2020 and December 2021 were selected. Using the results of manual microscopy as the control, we developed the linear kernel SVM algorithm, an artificial intelligence (AI) automated analysis software, with Python Scikit-learn script. The AI automated analysis software could identify leucocytes with toxic appearance and parabasal epitheliocytes (PBC). The bacterial grading parameters were reset using standard strains of lactobacillus and AV common isolates. The receiver operating characteristic (ROC) curve analysis was used to determine the cut-off value of AV evaluation results for different scoring items were obtained by using the results of manual microscopy as the control. Then, the parameters of automatic AV identification were determined and the automatic AV analysis scoring method was initially established. Results: A total of 3769 vaginal secretion samples were collected. The AI automated analysis system incorporated five parameters and each parameter incorporated three severity scoring levels. We selected 1.5 µm as the cut-off value for the diameter between Lactobacillus and common AV bacterial isolates. The automated identification parameter of Lactobacillus was the ratio of bacteria ≥1.5 µm to those <1.5 µm. The cut-off scores were 2.5 and 0.5, In the parameter of white blood cells (WBC), the cut-off value of the absolute number of WBC was 103 µL-1 and the cut-off value of WBC-to-epithelial cell ratio was 10. The automated identification parameter of toxic WBC was the ratio of toxic WBC toWBC and the cut-off values were 1% and 15%. The parameter of background flora was bacteria<1.5 µm and the cut-off values were 5×103 µL-1 and 3×104 µL-1. The parameter of the parabasal epitheliocytes was the ratio of PBC to epithelial cells and the cut-off values were 1% and 10%. The agreement rate between the results of automated microscopy and those of manual microscopy was 92.5%. Out of 200 samples, automated microscopy and manual microscopy produced consistent scores for 185 samples, while the results for 15 samples were inconsistent. Conclusion: We developed an AI recognition software for AV and established an automated vaginal secretion microscopy scoring system for AV. There was good overall concordance between automated microscopy and manual microscopy. The AI identification software for AV can complete clinical lab examination with rather high objectivity, sensitivity, and efficiency, markedly reducing the workload of manual microscopy.


Artificial Intelligence , Female , Humans , Vagina/microbiology , Microscopy/methods , Vaginosis, Bacterial/microbiology , Vaginosis, Bacterial/diagnosis , Lactobacillus/isolation & purification , Algorithms , ROC Curve , Deep Learning , Software
13.
Ann Clin Microbiol Antimicrob ; 23(1): 37, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664821

PURPOSE: Group B Streptococcus (GBS) is the leading cause of invasive infections in newborns. The prevention of GBS neonatal disease relies on the administration of an intrapartum antibiotic prophylaxis to GBS-colonized women. In recent years, rapid intrapartum detection of GBS vaginal colonization using real-time nucleic acid amplification tests (NAATs) emerged as an alternative to antenatal culture screening methods. METHODS: We compared the performances of two loop-mediated isothermal amplification (LAMP) tests, the Ampliflash® GBS and the PlusLife® GBS tests, to standard culture for GBS detection in vaginal specimens from pregnant women. The study was conducted from April to July 2023 in a French hospital of the Paris area. RESULTS: A total of 303 samples were analyzed, including 85 culture-positive samples (28.1%). The Ampliflash® GBS test and the PlusLife® GBS tests gave a result for 100% and 96.3% tests, respectively. The performances of the tests were as follows: sensitivity 87.1% (95% confidence interval (CI) 78.3-92.6) and 98.7% (95% CI 93.0-99.8), specificity 99.1% (95% CI 96.7-99.8), and 91.9% (95% CI 87.3-95.0), respectively. False negative results of the Ampliflash® GBS test correlated with low-density GBS cultures. Time-to-results correlated with GBS culture density only for the PlusLife® GBS test (p < 0.001). CONCLUSION: Both techniques provide excellent analytical performances with high sensitivity and specificity together with a short turnaround time and results available in 10 to 35 min. Their potential to further reduce the burden of GBS neonatal disease compared with antenatal culture screening needs to be assessed in future clinical studies.


Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pregnancy Complications, Infectious , Sensitivity and Specificity , Streptococcal Infections , Streptococcus agalactiae , Vagina , Humans , Female , Nucleic Acid Amplification Techniques/methods , Streptococcus agalactiae/genetics , Streptococcus agalactiae/isolation & purification , Pregnancy , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Vagina/microbiology , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/microbiology , Molecular Diagnostic Techniques/methods , Infant, Newborn , Adult
14.
BMC Pregnancy Childbirth ; 24(1): 324, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671377

BACKGROUND: The leading hypothesis of the pathogenesis of cervical insufficiency suggests a role of cervical inflammation. Urogenital tract infections could play a causative role in this process. To test this hypothesis in women with a cervical cerclage, we aimed to retrospectively examine the relationship between gestational age (GA) at delivery and positive urogenital cultures. METHODS: This single center retrospective study reviewed the records of all women with a singleton pregnancy that underwent cervical cerclage (n = 203) between 2010 and 2020 at the University Hospital of Leuven, Belgium. Transvaginal cerclages were categorized as history indicated (TVC I, n = 94), ultrasound indicated (TVC II, n = 79) and clinically indicated (TVC III, n = 20). Additionally, ten women received transabdominal cerclage (TAC). Urogenital cultures (vaginal and urine) were taken before and after cerclage with 4-week intervals. Urogenital cultures were reported 'positive' if urine and/or vaginal cultures showed significant growth of a microorganism. Treatment decision depended on culture growth and clinical presentation. The primary aim was to evaluate the association between the urogenital culture results and the GA at delivery, for each of the cerclage groups. Secondarily, to investigate the effect of antibiotic treatment of positive cultures on GA at delivery. RESULTS: Positive pre-cerclage urogenital cultures were associated with lower GA at delivery in TVC III (positive culture 26w4d ± 40d vs. negative 29w6d ± 54d, p = 0.036). For TVC I, GA at delivery was longer when pre-cerclage urogenital cultures were positive (positive culture 38w0d ± 26d vs. negative 35w4d ± 42d, p = 0.035). Overall post-cerclage urogenital cultures status was not associated with a different GA at delivery. Treating patients with pre- or post-cerclage positive urogenital cultures did also not change GA at delivery. CONCLUSION: Positive urogenital cultures taken before clinically indicated cerclage intervention may be associated with lower GA at delivery. However, there seems to be no benefit of antibiotic treatment or routine urogenital cultures during follow-up of asymptomatic women after cerclage placement.


Cerclage, Cervical , Gestational Age , Premature Birth , Vagina , Humans , Female , Retrospective Studies , Pregnancy , Adult , Premature Birth/prevention & control , Premature Birth/etiology , Vagina/microbiology , Urinary Tract Infections , Uterine Cervical Incompetence/surgery , Belgium
15.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673883

Respiratory infections are common in pregnancy with conflicting evidence supporting their association with neonatal congenital anomalies, especially during the first trimester. We profiled cytokine and chemokine systemic responses in 242 pregnant women and their newborns after SARS-CoV-2 infection, acquired in different trimesters. Also, we tested transplacental IgG passage and maternal vaginal-rectal microbiomes. IgG transplacental passage was evident, especially with infection acquired in the first trimester. G-CSF concentration-involved in immune cell recruitment-decreased in infected women compared to uninfected ones: a beneficial event for the reduction of inflammation but detrimental to ability to fight infections at birth. The later the infection was acquired, the higher the systemic concentration of IL-8, IP-10, and MCP-1, associated with COVID-19 disease severity. All infected women showed dysbiosis of vaginal and rectal microbiomes, compared to uninfected ones. Two newborns tested positive for SARS-CoV-2 within the first 48 h of life. Notably, their mothers had acute infection at delivery. Although respiratory infections in pregnancy are reported to affect babies' health, with SARS-CoV-2 acquired early during gestation this risk seems low because of the maternal immune response. The observed vaginal and rectal dysbiosis could be relevant for neonatal microbiome establishment, although in our series immediate neonatal outcomes were reassuring.


COVID-19 , Dysbiosis , Pregnancy Complications, Infectious , SARS-CoV-2 , Vagina , Humans , Female , Pregnancy , COVID-19/immunology , Dysbiosis/immunology , Dysbiosis/microbiology , Adult , SARS-CoV-2/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/microbiology , Pregnancy Complications, Infectious/virology , Vagina/microbiology , Vagina/immunology , Vagina/virology , Infant, Newborn , Cytokines/metabolism , Pregnancy Trimesters/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Microbiota/immunology
16.
Front Cell Infect Microbiol ; 14: 1280636, 2024.
Article En | MEDLINE | ID: mdl-38585656

Vaginal microbiota transplantation (VMT) is a cutting-edge treatment modality that has the potential to revolutionize the management of vaginal disorders. The human vagina is a complex and dynamic ecosystem home to a diverse community of microorganisms. These microorganisms play a crucial role in maintaining the health and well-being of the female reproductive system. However, when the balance of this ecosystem is disrupted, it can lead to the development of various vaginal disorders. Conventional treatments, such as antibiotics and antifungal medications, can temporarily relieve the symptoms of vaginal disorders. However, they often fail to address the underlying cause of the problem, which is the disruption of the vaginal microbiota. In recent years, VMT has emerged as a promising therapeutic approach that aims to restore the balance of the vaginal ecosystem. Several studies have demonstrated the safety and efficacy of VMT in treating bacterial vaginosis, recurrent yeast infections, and other vaginal conditions. The procedure has also shown promising results in reducing the risk of sexually transmitted infections and preterm birth in pregnant women. However, more research is needed to establish optimal donor selection, preparation, and screening protocols, as well as long-term safety and efficacy. VMT offers a safe, effective, and minimally invasive treatment option for women with persistent vaginal problems. It could improve the quality of life for millions of women worldwide and become a standard treatment option shortly. With further research and development, it could potentially treat a wide range of other health problems beyond the scope of vaginal disorders.


Microbiota , Premature Birth , Infant, Newborn , Female , Pregnancy , Humans , Quality of Life , Vagina/microbiology , Hand Strength
17.
BMC Microbiol ; 24(1): 112, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575862

BACKGROUND: Postpartum women often experience stress urinary incontinence (SUI) and vaginal microbial dysbiosis, which seriously affect women's physical and mental health. Understanding the relationship between SUI and vaginal microbiota composition may help to prevent vaginal diseases, but research on the potential association between these conditions is limited. RESULTS: This study employed 16S rRNA gene sequencing to explore the association between SUI and vaginal dysbiosis. In terms of the vaginal microbiota, both species richness and evenness were significantly higher in the SUI group. Additionally, the results of NMDS and species composition indicated that there were differences in the composition of the vaginal microbiota between the two groups. Specifically, compared to postpartum women without SUI (Non-SUI), the relative abundance of bacteria associated with bacterial dysbiosis, such as Streptococcus, Prevotella, Dialister, and Veillonella, showed an increase, while the relative abundance of Lactobacillus decreased in SUI patients. Furthermore, the vaginal microbial co-occurrence network of SUI patients displayed higher connectivity, complexity, and clustering. CONCLUSION: The study highlights the role of Lactobacillus in maintaining vaginal microbial homeostasis. It found a correlation between SUI and vaginal microbiota, indicating an increased risk of vaginal dysbiosis. The findings could enhance our understanding of the relationship between SUI and vaginal dysbiosis in postpartum women, providing valuable insights for preventing bacterial vaginal diseases and improving women's health.


Microbiota , Urinary Incontinence, Stress , Vaginal Diseases , Female , Humans , Urinary Incontinence, Stress/etiology , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Vagina/microbiology , Microbiota/genetics , Lactobacillus/genetics , Bacteria/genetics , Vaginal Diseases/complications
18.
BMC Womens Health ; 24(1): 224, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582823

OBJECTIVE: Vaginal microbiota evaluation is a methodology widely used in China to diagnose various vaginal inflammatory diseases. Although vaginal microbiota evaluation has many advantages, it is time-consuming and requires highly skilled and experienced operators. Here, we investigated a six-index functional test that analyzed pH, hydrogen peroxide (H2O2), leukocyte esterase (LEU), sialidase (SNA), ß-glucuronidase (GUS), and acetylglucossidase (NAG), and determined its diagnostic value by comparing it with morphological tests of vaginal microbiota. MATERIALS AND METHODS: The research was conducted using data extracted from the Laboratory Information System of Women and Children's Hospital. A total of 4902 subjects, ranging in age from 35.4 ± 9.7 years, were analyzed. During the consultation, a minimum of two vaginal swab specimens per patient were collected for both functional and morphological testing. Fisher's exact was used to analyze data using SPSS. RESULTS: Of the 4,902 patients, 2,454 were considered to have normal Lactobacillus morphotypes and 3,334 were considered to have normal dominant microbiota. The sensitivity and specificity of H2O2-indicating Lactobacillus morphotypes were 91.3% and 25.28%, respectively, while those of pH-indicating Lactobacillus morphotypes were 88.09% and 59.52%, respectively. The sensitivity and specificity of H2O2-indicating dominant microbiota were 91.3% and 25.3%, respectively, while those of pH-indicating dominant microbiota were 86.27% and 64.45%, respectively. The sensitivity and specificity of NAG for vulvovaginal candidiasis were 40.64% and 84.8%, respectively. For aerobic vaginitis, GUS sensitivity was low at 0.52%, while its specificity was high at 99.93%; the LEU sensitivity and specificity values were 94.73% and 27.49%, respectively. Finally, SNA sensitivity and specificity for bacterial vaginosis were 80.72% and 96.78%, respectively. CONCLUSION: Functional tests (pH, SNA, H2O2, LEU) showed satisfactory sensitivity for the detection of vaginal inflammatory diseases. However, these tests lacked specificity, making it difficult to accurately identify specific pathologies. By contrast, NAG and GUS showed excellent specificity in identifying vaginal inflammatory diseases, but their sensitivity was limited. Therefore, functional tests alone are not sufficient to diagnose various vaginal inflammatory diseases. When functional and morphological tests are inconsistent, morphological tests are currently considered the preferred reference method.


Candidiasis, Vulvovaginal , Vaginosis, Bacterial , Child , Humans , Female , Adult , Middle Aged , Hydrogen Peroxide , Vaginosis, Bacterial/diagnosis , Candidiasis, Vulvovaginal/diagnosis , Candidiasis, Vulvovaginal/microbiology , Vagina/microbiology , Sensitivity and Specificity
19.
Nanoscale ; 16(17): 8216-8235, 2024 May 02.
Article En | MEDLINE | ID: mdl-38572613

Extracellular vesicles (EVs) are cell-derived nanoparticles that carry small molecules, nucleic acids, and proteins long distances in the body facilitating cell-cell communication. Microorganism-derived EVs mediate communication between parent cells and host cells, with recent evidence supporting their role in biofilm formation, horizontal gene transfer, and suppression of the host immune system. As lipid-bound bacterial byproducts, EVs demonstrate improved cellular uptake and distribution in vivo compared to cell-free nucleic acids, proteins, or small molecules, allowing these biological nanoparticles to recapitulate the effects of parent cells and contribute to a range of human health outcomes. Here, we focus on how EVs derived from vaginal microorganisms contribute to gynecologic and obstetric outcomes. As the composition of the vaginal microbiome significantly impacts women's health, we discuss bacterial EVs from both healthy and dysbiotic vaginal microbiota. We also examine recent work done to evaluate the role of EVs from common vaginal bacterial, fungal, and parasitic pathogens in pathogenesis of female reproductive tract disease. We highlight evidence for the role of EVs in women's health, gaps in current knowledge, and opportunities for future work. Finally, we discuss how leveraging the innate interactions between microorganisms and mammalian cells may establish EVs as a novel therapeutic modality for gynecologic and obstetric indications.


Extracellular Vesicles , Microbiota , Reproductive Health , Vagina , Extracellular Vesicles/metabolism , Female , Humans , Vagina/microbiology , Vagina/metabolism , Bacteria/metabolism
20.
Int J Infect Dis ; 143: 107035, 2024 Jun.
Article En | MEDLINE | ID: mdl-38561043

OBJECTIVES: Infections are one of the most common causes of neonatal mortality, and maternal colonization has been associated with neonatal infection. In this study, we sought to quantify carriage prevalence of extended-spectrum-beta-lactamase (ESBL) -producing and carbapenem-resistant Enterobacterales (CRE) among pregnant women and their neonates and to characterize risk factors for carriage in rural Amhara, Ethiopia. METHODS: We conducted a prospective cohort study nested in the Birhan field site. We collected rectal and vaginal samples from 211 pregnant women in their third trimester and/or during labor/delivery and perirectal or stool samples from 159 of their neonates in the first week of life. RESULTS: We found that carriage of ESBL-producing organisms was fairly common (women: 22.3%, 95% CI: 16.8-28.5; neonates: 24.5%, 95% CI: 18.1-32.0), while carriage of CRE (women: 0.9%, 95% CI: 0.1-3.4; neonates: 2.5%, 95% CI: 0.7-6.3) was rare. Neonates whose mothers tested positive for ESBL-producing organisms were nearly twice as likely to also test positive for ESBL-producing organisms (38.7% vs 21.1%, P-value = 0.06). Carriage of ESBL-producing organisms was also associated with Woreda (district) of sample collection and recent antibiotic use. CONCLUSION: Understanding carriage patterns of potential pathogens and antibiotic susceptibility among pregnant women and newborns will inform local, data-driven recommendations to prevent and treat neonatal infections.


Anti-Bacterial Agents , Carrier State , Enterobacteriaceae Infections , Enterobacteriaceae , Pregnancy Complications, Infectious , beta-Lactamases , Humans , Female , Pregnancy , Ethiopia/epidemiology , Infant, Newborn , Carrier State/epidemiology , Carrier State/microbiology , Adult , Prospective Studies , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Anti-Bacterial Agents/pharmacology , Young Adult , Pregnancy Complications, Infectious/microbiology , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/drug therapy , Prevalence , Risk Factors , Rectum/microbiology , Feces/microbiology , Adolescent , Microbial Sensitivity Tests , Vagina/microbiology
...